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Abstract. Colonoscopy analysis, particularly automatic polyp segmen-
tation and detection, is essential for assisting clinical diagnosis and treat-
ment. However, as medical image annotation is labour- and resource-
intensive, the scarcity of annotated data limits the effectiveness and gen-
eralization of existing methods. Although recent research has focused on
data generation and augmentation to address this issue, the quality of the
generated data remains a challenge, which limits the contribution to the
performance of subsequent tasks. Inspired by the superiority of diffusion
models in fitting data distributions and generating high-quality data,
in this paper, we propose an Adaptive Refinement Semantic Diffusion
Model (ArSDM) to generate colonoscopy images that benefit the down-
stream tasks. Specifically, ArSDM utilizes the ground-truth segmentation
mask as a prior condition during training and adjusts the diffusion loss
for each input according to the polyp/background size ratio. Further-
more, ArSDM incorporates a pre-trained segmentation model to refine
the training process by reducing the difference between the ground-truth
mask and the prediction mask. Extensive experiments on segmentation
and detection tasks demonstrate the generated data by ArSDM could
significantly boost the performance of baseline methods.

Keywords: Diffusion models - Colonoscopy - Polyp segmentation -
Polyp detection

Y. Du and Y. Jiang—Equal contributions.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-43895-0 32.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Greenspan et al. (Eds.): MICCAI 2023, LNCS 14221, pp. 339-349, 2023.
https://doi.org/10.1007/978-3-031-43895-0_32


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43895-0_32&domain=pdf
https://doi.org/10.1007/978-3-031-43895-0_32
https://doi.org/10.1007/978-3-031-43895-0_32

340 Y. Du et al.

1 Introduction

Colonoscopy is a critical tool for identifying adenomatous polyps and reducing
rectal cancer mortality. Deep learning methods have shown powerful abilities in
automatic colonoscopy analysis, including polyp segmentation [5,22,26,27,29]
and polyp detection [19,24]. However, the scarcity of annotated data due to high
manual annotation costs results in poorly trained and low generalizable models.
Previous methods have relied on generative adversarial networks (GANs) [9,25]
or data augmentation methods [3,13,28] to enhance learning features, but
these methods yielded limited improvements in downstream tasks. Recently,
diffusion models [6,15] have emerged as promising solutions to this problem,
demonstrating remarkable progress in generating multiple modalities of medical
data [4,10,12,21].
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Fig. 1. Overview of the pipeline of our proposed approach, where details of ArSDM
are described in Sect. 2.

Despite recent progress in these methods for medical image analysis, existing
models face two major challenges when applied to colonoscopy image analysis.
Firstly, the foreground (polyp) of colonoscopy images contains rich pathological
information yet is often tiny compared with the background (intestine wall) and
can be easily overwhelmed during training. Thus, naive generative models may
generate realistic colonoscopy images but those images seldom contain polyp
regions. In addition, in order to generate high-quality annotated samples, it is
crucial to maintain the consistency between the polyp morphologies in synthe-
sized images and the original masks, which current generative models struggle
to achieve.

To tackle these issues and inspired by the remarkable success achieved by dif-
fusion models in generating high-quality CT or MRI data [8,11,23], we creatively
propose an effective adaptive refinement semantic diffusion model (ArSDM) to
generate polyp-contained colonoscopy images while preserving the original anno-
tations. The pipeline of the data generation and downstream task training is
shown in Fig. 1. Specifically, we use the original segmentation masks as condi-
tions to train a conditional diffusion model, which makes the generated sam-
ples share the same masks with the input images. Moreover, during diffusion
model training, we employ an adaptive loss re-weighting method to assign loss
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weights for each input according to the size ratio of polyps and background,
which addresses the overfitting problem for the large background. In addition,
we fine-tune the diffusion model by minimizing the distance between the original
ground truth masks and the prediction masks from synthesis images via a pre-
trained segmentation network. Thus the refined model could generate samples
better aligned with the original masks.

In summary, our contributions are three-fold: (1) Adaptive Refinement
SDM: Based on the standard semantic diffusion model [21], we propose a novel
ArSDM with the adaptive loss re-weighting and the prediction-guided sample
refinement mechanisms, which is capable of generating realistic polyp-contained
colonoscopy images while preserving the original annotations. To the best of our
knowledge, this is the first work for adapting diffusion models to colonoscopy
image synthesis. (2) Large-Scale Colonoscopy Generation: The proposed
approach can be used to generate large-scale datasets with no/arbitrary anno-
tations, which significantly benefits the medical image society, laying the foun-
dation for large-scale pre-training models in automatic colonoscopy analysis. (3)
Qualitative and Quantitative Evaluation: We conduct extensive experi-
ments to evaluate our method on five public benchmarks for polyp segmentation
and detection. The results demonstrate that our approach could help deep learn-
ing methods achieve better performances. The source code is available at https://
github.com/DuYooho/ArSDM.

2 Method

Background. Denoising diffusion probabilistic models (DDPMs) [6] are classes
of deep generative models, which have forward and reverse processes. The for-
ward process is a Markov Chain that gradually adds Gaussian noise to the orig-
inal data. This process can be formulated as the joint distribution ¢ (x1.7 | X¢):

T
q(x1r | x0) == [ a(xe | xec1),q(xe | x021) =N (Xt; V1= 5txt71>6t1> ;
=1
(1)

where ¢ (x¢) is the original data distribution with xg ~ ¢ (xg), x1.7 are latents
with the same dimension of xg and (3; is a variance schedule.

The reverse process is aiming to learn a model to reverse the forward process
that reconstructs the original input data, which is defined as:

T
Po (Xo.1) := p (X7) Hpe (xe—1 | X¢) 0o (X1 | X¢) i= N (x¢—1; po (x¢,) ,071)
t=1
(2)
where p(x7) is the noised Gaussian transition from the forward process at
timestep 7. In this case, we only need to use deep-learning models to repre-

sent pp with 0 as the model parameters. According to the original paper [6], the
loss function can be simplified as:

ﬁsimple = IE‘t,xt,efv./\/(O,I) HE — €9 (xt7 t)||2:| . (3)
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Fig. 2. The overall architecture of ArSDM.

Thus, instead of training the model py to predict fi;, we can train the model €y
to predict €, which is easier for parameterization and learning.

In this paper, we propose an adaptive refinement semantic diffusion model,
a variant of DDPM, which has three key parts, i.e., mask conditioning, adaptive
loss re-weighting, and prediction-guided sample refinement. The overall illustra-
tion of our framework is shown in Fig. 2.

2.1 Mask Conditioning

Unlike the previous generative methods, our work aims to generate a synthetic
image with an identical segmentation mask to the original annotation. To accom-
plish this, we adapt the widely used conditional U-Net architecture [21] in the
reverse process, where the mask is fed as a condition. Specifically, for an input
image xq € REXW*C %, can be sampled at any timestep ¢ with the closed form:

Xt = VaXg + V 1-— (j[t€7 (4)

where € ~ N (0,I),c; :==1— 3 and a; := Hizl as. It will be fed into the
encoder £ of the U-Net, and its corresponding mask annotation ¢y € RF*W will
be injected into the decoder D. The model output can be formulated as:

€0 (x¢,t,¢c0) =D (E(x4),c0) - (5)

Thus, the U-Net model €y in Eq.3 becomes €y (x¢,t,¢p), and the loss function
in Eq. 3 is changed to:

2
Econdition = IEt,xt,(:g,ew./\f(O,I) I:”6 — €9 (Xt; t, CO)” . (6)
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Algorithm 1: One training iteration of ArSDM

Input: ¢ ~ Uniform({1,...,T}), xo ~ q(x0), o, € ~ N (0,1)
Output: €, ¢o

1 Xt = /Xo + \/1 — th; it = arXo + V 1-— Qt€p (XtataCO)

2 fori=t,....1do

3 2~NOIDifi>1 esen=0; % =-L (x . (ii,i,co)) + oz
4 end for

5 Gy = P(io)

6 Take gradient descent step on Vg Liotal

2.2 Adaptive Loss Re-weighting

The polyp regions in the colonoscopy images differ from the background regions,
which contain more pathological information and should be adequately treated
to learn a better model. However, training the diffusion models using the original
loss function ignores the difference between different regions, where each pixel
shares the same weights when calculating the loss. This would lead to the model
generating more background-like polyps since the large background region will
easily overwhelm the small foreground polyp regions during training. A simple
way to alleviate this problem is to apply a weighted loss function that assigns
the polyp and background regions with different weights. However, most polyps
vary a lot in size and shape. Thus assigning constant weights for all polyps
exacerbated the imbalance problem. In this case, to tackle this problem, we
propose an adaptive loss function that vests different weights according to the
size ratio of the polyp over the background. Specifically, we define a pixel-wise

weights matrix W € REXW with each entry w;\] to be:
l—r ,p= #p=1)
A ’ _
wiyj_{r L p= ) r= Hx W ' (7)

where p = 1 means the pixel p at (h,w) belongs to the polyp region and p =0
means it belongs to the background region. Thus, the loss function becomes:

2
Eadaptive = ]Et,xt,co,ew./\f(O,I) W)\ : ”6 — €p (Xta t, CO)H . (8)

2.3 Prediction-Guided Sample Refinement

The downstream tasks of polyp segmentation and detection require rich semantic
information on polyp regions to train a good model. Through extensive exper-
iments, we found inaccurate sample images with coarse polyp boundary that
is not aligned properly with the original masks may introduce large biases and
noises to the datasets. The model can be confused by several conflicting training
images with the same annotation. To this end, we design a refinement strategy
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Table 1. Comparisons of different settings applied on three polyp segmentation base-
lines.

Methods | EndoScene ClinicDB Kvasir ColonDB ETIS Overall
mDice | mIoU | mDice | mIoU | mDice | mIoU | mDice | mIoU | mDice | mIoU | mDice | mIoU
PraNet |87.1 79.7 189.9 84.9 |89.8 84.0 |70.9 64.0 |62.8 56.7 | 74.0 67.5
FLDM |83.7 |76.9 |88.2 83.5 |88.4 |83.0 |62.6 56.0 |56.2 50.3 |67.8 61.7
+SDM | 89.9 |83.2 |89.2 83.7 |88.4 |82.6 |T74.2 66.5 |66.4 |60.3 |76.4 |69.6
+Ours [89.7 |82.7 | 93.3 |88.5 [89.9 |84.5 |76.1 |68.9 |75.5 |68.1 80.0 |73.2
SANet |88.8 81.5 |91.6 (859 |904 |84.7 |75.3 67.0 |75.0 65.4 |794 714
+LDM | 72.7 |60.5 |88.8 82.8 |88.7 |82.7 |64.3 55.4 |58.0 [49.2 |68.3 59.8
+SDM | 90.2 |83.0 |89.9 84.1 |90.9 85.4 |77.6 69.3 |74.7 |66.8 |80.4 |729
+QOurs [90.2 |83.2 914 |86.1 |91.1 |85.6 |77.7 |70.0 [78.0 |69.5 81.5 |74.1
PVT 90.0 [83.3 |93.7 889 |91.7 86.4 [80.8 72.7 787 |70.6 |83.3 76.0
+LDM |88.2 81.2 |92.3 87.1 |91.2 85.7 |78.7 |70.4 |78.0 69.6 |81.9 74.2
+SDM | 88.8 81.7 |93.9 [89.2 |91.2 86.1 |81.3 73.5 787 | 71.1 |834 76.3
+Owurs |88.2 81.2 |92.2 87.5 |91.5 86.3 |81.7 |73.8 |[80.6 |72.9 84.0 |76.7

that uses the prediction of a pre-trained segmentation model on the sampled
images to guide the training process and restore the proper polyp boundary
information. Specifically, at each iteration of training, the output € = €y (x4, t, o)
will go into the sampler to generate sample image Xo. Then, we take the sample
image as the input of the segmentation model to predict the pseudo masks .
We propose the following refinement loss based on IoU loss and binary cross
entropy (BCE) loss between €y and ¢g. The refinement loss is:

=5

ﬁre ne — ﬁ(C, C~g) + L (62) s
! ; (9)

€o = {C3,€4,C5,¢4} =P (S (€)),

where £ = Lj,u + Lpcg is the sum of the IoU loss and BCE loss, ¢q is the
collection of the three side-outputs (€3, €4, €5) and the global map ¢, as described
in [5]. P(:) represents the PraNet model and S(+) is the DDIM [16] sampler. The
detailed procedure of one training iteration is shown in Algorithm 1 and the
overall loss function is defined as:

Etotal = ﬁadaptive + Ereﬁne . (10)

3 Experiments

3.1 ArSDM Experimental Settings

We conducted our experiments on five public polyp segmentation datasets:
EndoScene [20], CVC-ClincDB/CVC-612 [1], CVC-ColonDB [18], ETIS [14] and
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Table 2. Comparisons of different settings applied on three polyp detection baselines.

Methods | EndoScene | ClinicDB | Kvasir ColonDB | ETIS Overall

AP |F1 |AP |F1 |AP |F1 |AP |F1 |AP |F1 |AP |F1
Center |86.9 [91.484.7 [89.2 75.6 |81.4 |62.2 |72.3 62.7 |70.1 |56.6 |76.0
+LDM | 84.1 84.4 1 90.4|89.9 |81.3 |81.8 |73.4 |74.5 |65.2 |71.7 |62.0 | 76.9
+SDM | 87.886.9 88.7 |91.0|77.0 |82.8 |71.8 |78.1 |68.2 |72.6 61.8 |79.1
+Ours | 85.0 89.1 |86.1 |90.8 |77.3|84.7|74.2/80.2|68.7|75.6 65.7 81.3
Sparse | 89.9 87.8 81.4 |86.4 |75.6 [80.2 |78.2 |73.2 |63.8 |62.4 |63.7 |73.2
+LDM | 87.4 | 76.3 | 95.0/93.5|81.5 |58.8 |80.0 |71.0 |64.4 |54.3 |65.3 | 66.3
+SDM | 94.590.5|88.7 [86.5 |79.0 |80.5 |81.4 76.8 |67.8 |67.1 |65.2 |76.7
+Ours 92.8 [86.2 192.2 |90.6 | 81.6|82.3/80.1 |79.8/72.4|70.4/66.4 79.0
Deform |98.1/94.4/89.7 |89.9 |80.2 74.4 |82.2 | 75.5 |65.3 | 54.7 |64.5 |71.8
+LDM 94.6 190.5 |91.6 |89.5 |79.3 |73.4 |78.0 |73.2 |69.0 |64.0 |63.4 |73.3
+SDM | 96.0 190.6 | 90.3 |91.2 |82.2 |78.9 |80.1 |75.1 |67.5 |66.7 |65.1 |75.8
+Ours 94.7 194.3 1 92.3/92.0/80.0 |80.3|81.4 |77.3|74.1|/69.367.9|77.9

Kuvasir [7]. Following the standard of PraNet, 1,450 image-mask pairs from Kvasir
and CVC-ClinicDB are taken as the training set. The evaluations are conducted
on the five datasets separately to verify the learning and generalization capa-
bility. The training image-mask pairs are padded to have the same height and
width and then resized to the size of 384 x 384. Experiments with prediction-
guided sample refinement are trained with around one-half NVIDIA A100 days,
while others are trained with approximately one day for convergence. We use
the DDIM sampler with a maximum timestep of 200 for sampling images.

3.2 Downstream Experimental Settings

We conduct the evaluation of our methods and the state-of-the-art counterparts
on polyp segmentation and detection tasks. We generated the same number of
samples as the diffusion training set using the original masks, and then com-
bined them to create a new downstream training set. We employed PraNet [5],
SANet [22], and Polyp-PVT [2] as baseline segmentation models with default set-
tings, and evaluated them using mean Intersection over Union (IoU) and mean
Dice metrics. For detection, we selected CenterNet [30], Sparse-RCNN [17], and
Deformable-DETR [31] as baseline models with the same settings as the original
papers, and evaluated them using Average Precision (AP) and F1-scores.

3.3 Quantitative Comparisons

The experimental results presented in Table 1 and 2 demonstrate the effective-
ness of our proposed method in training better downstream models to achieve
superior performance. Specifically, data generated by our approach assists the
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Table 3. Ablation study of different com- Table 4. Ablation study of different com-

ponents on polyp segmentation tasks. ponents on polyp detection tasks.
Methods | PraNet SANet Methods |CenterNet | Sparse.
Ada. | Ref. | mDice | mIoU | mDice | mIoU Ada. |Ref. AP |F1 AP |F1
X X 76.4 69.6 |80.4 72.9 X X 61.8 |79.1 |65.2 |76.7
v X 79.1 72.4 |80.5 72.8 v X 62.2 |80.1 |65.8 |77.2
X v 78.5 71.5 |81.1 73.2 X v 64.0 |80.4 |66.0 |77.6
v v 80.0 |73.2 |81.5 |74.1 v v 65.7/81.3/66.4|79.0
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Fig. 3. Illustration of generated samples with the corresponding masks and original
images for comparison reference.

significant improvements for each model in mDice and mloU, with increases of
6.0% and 5.7% over PraNet, 2.1% and 2.7% over SANet, and 0.7% and 0.7% over
Polyp-PVT. We also observe superior AP and F1-scores compared to CenterNet,
Sparse-RCNN, and Deformable-DETR trained with original data, with gains of
9.1% and 5.3%, 2.7% and 5.8%, and 3.4% and 6.1%, respectively. Moreover, we
conducted a comprehensive comparison with SOTA models, noting that these
models were not specifically designed for colonoscopy images and may generate
data that hinder the training process or lack the ability for effective improvement.
Nevertheless, our experimental results confirm the superiority of our proposed
method.

Ablation Study. We conducted an ablation study to assess the importance
of each proposed component. Table 3 and 4 report the overall accuracies on the
test set. The results demonstrate both components contribute to the accuracy
improvement of baseline models, indicating their essential roles in achieving the
best final performance.

3.4 Qualitative Analyses

To further investigate the generative performance of our approach, we present
visualization results in Fig. 3, which displays the generated samples and their
corresponding masks, alongside the original images for reference. The gener-
ated samples demonstrate differences from the original images in both the polyp
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regions and the backgrounds while maintaining alignment with the masks. Addi-
tionally, we sought evaluations from medical professionals to assess the authen-
ticity of the generated samples, and non-medical professionals to locate polyps
in the images, which yielded positive feedback on the quality of the generated
samples.

4 Conclusion

Automatic generation of annotated data is essential for colonoscopy image anal-
ysis, where the scale of existing datasets is limited by the expertise and time
required for manual annotation. In this paper, we propose an adaptive refine-
ment semantic diffusion model (ArSDM) for generating colonoscopy images while
preserving annotations by introducing innovative adaptive loss re-weighting and
prediction-guided sample refinement mechanisms. To evaluate our approach
comprehensively, we conduct polyp segmentation and detection experiments on
five widely used datasets, where experimental results demonstrate the effective-
ness of our approach, in which model performances are greatly enhanced with
little synthesized data.
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